Papers (after 2017)

2022
  1. Takeshi Sato, Yumi Matsumiya, and Hiroshi Watanabe, “Experimental study of phase separation in dynamically asymmetric unentangled polymer blend”, Journal of Chemical Physics, 157, 224908 (2022). DOI: 10.1063/5.0124087
  2. Yumi Matsumiya, Takeshi Sato, Quan Chen, and Hiroshi Watanabe, “Rheo-dielectric Behavior of Unentangled Poly(butylene oxide): Preliminary Evaluation of Non-equilibrium Parameters at the Onset of Nonlinearity”, Nihon Reoroji Gakkaishi (Journal of the Society of Rheology, Japan), 50, 371-385 (2022). DOI: 10.1678/rheology.50.371
  3. Takeshi Sato and Ronald G. Larson, “Nonlinear Rheology of Entangled Wormlike Micellar Solutions Predicted by A Micelle-Slip-Spring Model”, Journal of Rheology, 66, 639 (2022). DOI: 10.1122/8.0000426
  4. Takeshi Sato, Yumi Matsumiya, and Hiroshi Watanabe, “Rheo-Dielectrics and Diffusion of Type-A Rouse Chain under Fast Shear Flow: Method of Evaluation of Non-equilibrium Parameters”, Nihon Reoroji Gakkaishi (Journal of Society Rheology, Japan), 50, 253 (2022). DOI: 10.1678/rheology.50.253
  5. Takeshi Sato, “Modeling Techniques for the Rheology of Wormlike Micellar Solutions”, Nihon Reoroji Gakkaishi (Journal of the Society of Rheology, Japan), 50, 9-13 (2022). DOI: 10.1678/rheology.50.9
2021
  1. T. Sato, Y. Kwon, Y. Matsumiya, and H. Watanabe*, “A Constitutive Equation for Rouse Model Modified for Variations of Spring Stiffness, Bead Friction, and Brownian Force Intensity Under Flow”, Phys. Fluids, accepted.
  2. Y. Matsumiya, H. Watanabe*, N. Sukhonthamethirat, and V. Vao-Soongnern, “Viscoelastic and Dielectric Behavior of Polyisoprene Monofunctionally Head-Modified with Associative Metal-Carboxylate Group”, J. Soc. Rheol. Jpn., 49(3), 189-197 (2021). DOI: 10.1678/rheology.49.189
  3. R. Shimada*, O. Urakawa, T. Inoue, and H. Watanabe*, “Phase equilibrium and dielectric relaxation in mixture of 5CB with dilute dimethyl phthalate: effect of coupling between orientation and composition fluctuations on molecular dynamics in isotropic one-phase state”, Soft Matter, Advance Article (2021). DOI: 10.1039/D1SM00496D
  4. H. Watanabe, Y. Matsumiya, and T. Sato, “Revisiting Nonlinear Flow Behavior of Rouse Chain: Roles of FENE, Friction-Reduction, and Brownian Force Intensity Variation”, Macromolecules54, 3700-3715 (2021). DOI: 10.1021/acs.macromol.1c00013
  5. Y. Matsumiya and H. Watanabe*, “Non-Universal Features in Uniaxially Extensional Rheology of Linear Polymer Melts and Concentrated Solutions: A Review”, Prog. Polym. Sci., 112 (2021) 101325. DOI: 10.1016/j.progpolymsci.2020.101325
2020
  1. H. Watanabe*, Y. Matsumiya, T. Sato, “Nonlinear Rheology of FENE Dumbbell model with Friction Reduction: Analysis of Brownian Force Intensity through Comparison of Extensional and Shear Viscosities”, J. Soc. Rheol. Jpn., 48(5), 259-269 (2020). DOI: 10.1678/rheology.48.259
  2. R. Shimada, H. Watanabe*, “Thermodynamic Effect on Viscosity and Density of a Mixture of 4-Cyano-4′-pentylbiphenyl (5CB) with Dilute Dimethyl Phthalate (DMP)”, J. Soc. Rheol. Jpn., 48(4), 199-206 (2020). DOI: 10.1678/rheology.48.199
  3. H. Iwawaki, O. Urakawa, T. Inoue*, Y. Nakamura, Y. Matsumiya, and H. Watanabe, “Rheo-Optical and Dielectric Study on Dynamics of Bottlebrush-like Polymacromonomer Consisting of a Polyisoprene Main Chain and Polystyrene Side Chains”, Macromolecules, 53, 7096-7106. DOI: 10.1021/acs.macromol.0c01041
  4. Y. Matsumiya, H. Watanabe*, “ENTANGLEMENT-LOOSENING DYNAMICS RESOLVED THROUGH COMPARISON OF DIELECTRIC AND VISCOELASTIC DATA OF TYPE-A POLYMERS: A REVIEW”, Rubber Chemistry and Technology, 93(1), pp. 22–62 (2020) . DOI: 10.5254/rct.19.80388
  5. X. Zhao, W. Yu, Y. Matsumiya, H. Watanabe*, Y. Kwon, “Dielectric Relaxation of Type-A Rouse Chains Undergoing Reversible End-Adsorption and Desorption”, J. Soc. Rheol. Jpn., 48(1), 27-35 (2020). DOI: 10.1678/rheology.48.27
  6. Y. Matsumiya, H. Watanabe*, O. Urakawa, T. Inoue, Y. Kwon, “Effect of Head-to-Head Association/Dissociation on Viscoelastic and Dielectric Relaxation of Entangled Linear Polyisoprene: An Experimental Test”, Macromolecules, 53(3), 1070-1083 (2020). DOI: 10.1021/acs.macromol.9b02399
2019
  1. Y. Kwon, Y. Matsumiya, and H. Watanabe*, “Dielectric Relaxation of Type‐A Chains Undergoing Head-to-Tail Association/Dissociation: Difference from Head-to-Head Case and Correlation with Viscoelastic Relaxation”, Macromolecules, 2019, 52, 8484-8502. DOI: 10.1021/acs.macromol.9b01710
  2. S. L. Morelly, L. Palmese, H. Watanabe, and N. J. Alvarez*, “Effect of Finite Extensibility on Nonlinear Extensional Rheology of Polymer Melts”, Macromolecules, 52, 915-922. DOI: 10.1021/acs.macromol.8b02319
2018
  1. Y. Matsumiya, H. Watanabe*, Y. Masubuchi, Q. Huang and O. Hassager, “Nonlinear Elongational Rheology of Non-Entangled Polystyrene and Poly(p-tert-butylstyrene) Melts”, Macromolecules, 2018, 51, 9710–9729. DOI: 10.1021/acs.macromol.8b01954
  2. H. Watanabe*, Y. Matsumiya and Y. Kwon, “Viscoelastic and Dielectric Relaxation of Reptating Type-A Chains Affected by Reversible Head-to-Head Association and Dissociation”, Macromolecules, 2018, 51, 6476–6496. DOI: 10.1021/acs.macromol.8b00691
  3. S. Wu, X. Cao, Z. Zhang, Q. Chen*, Y. Matsumiya and H. Watanabe, “Molecular Design of Highly Stretchable Ionomers”, Macromolecules, 2018, 51, 4735–4746. DOI: 10.1021/acs.macromol.8b00617
  4. K. I. S. Mongcopa, M. Tyagi, J. P. Mailoa, G. Samsonidze, B. Kozinsky, S. A. Mullin, D. A. Gribble, H. Watanabe and N. P. Balsara*, “Relationship between Segmental Dynamics Measured by Quasi-Elastic Neutron Scattering and Conductivity in Polymer Electrolytes”, ACS Macro Lett., 7, 504-508 (2018). DOI: 10.1021/acsmacrolett.8b00159
2017
  1. H. Watanabe*, Y. Matsumiya, and Y. Kwon, “Dynamics of Rouse Chains undergoing Head-to-Head Association and Dissociation: Difference between Dielectric and Viscoelastic Relaxation”, J. Rheol., 61(6), 1151-1170 (2017). DOI: 10.1122/1.4997579
  2. O. M. Kwon, H. Watanabe, K. H. Ahn, and S. J. Lee, “Growths of mechanical elasticity and electrical conductance of graphene nanoplatelets/poly (lactic acid) composites under strong electric field: Correlation with time evolution of higher order structure of graphene nanoplatelets”, Rheol. Acta, 56(11), 871-885 (2017) DOI: 10.1007/s00397-017-1042-z.
  3. R. Shimada*, H. Sakai, J. Yamamoto, H. Watanabe, “Creation of large, periodic temperature gradient via plasmonic heating from mesoscopic planar lattice of metal domains”, International Journal of Thermal Sciences, 118, 247-258 (2017). DOI: 10.1016/j.ijthermalsci.2017.04.022
  4. H. Watanabe* and Y. Matsumiya, “Revisit the Elongational Viscosity of FENE Dumbbell Model”, J. Soc. Rheol. Jpn., 45(4), 185-190 (2017). DOI: 10.1678/rheology.45.185
  5. Y. Doi, A. Matsumoto, T. Inoue, T. Iwamoto, A. Takano, Y. Matsushita, Y. Takahashi, and H. Watanabe, “Re-examination of terminal relaxation behavior of high-molecular-weight ring polystyrene melts”, Rheol. Acta, 56(6), 567-581 (2017). DOI: 10.1007/s00397-017-1014-3
  6. O. M. Kwon, H. Watanabe, K. H. Ahn, and S. J. Lee, “Interplay between structure and property of graphene nanoplatelet networks formed by an electric field in a poly (lactic acid) matrix”, J. Rheol., 61(2), 291-303 (2017). DOI: 10.1122/1.4975335
  7. Y. Matsumiya, H. Watanabe, K. Abe, Y. Matsumura, F. Tani, Y. Kase, S. Kikkawa, Y. Suzuki, and N. Ishii, “Rheology of Nano-Cellulose Fiber Suspension”, J. Soc. Rheol. Jpn., 45(1), 3-11 (2017). DOI: 10.1678/rheology.45.3
Before 2016

For papers published before 2016, please click here to visit Prof. Watanabe’s website.

Conferences

Under Construction.